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Abstract--Finite difference solutions of the two-fluid equations of motion for a particle (droplet)-fluid 
mixture in a rotating finite axisymmetric cylinder are presented. The numerical method, which can be 
regarded as an extension of the Harlow & Amsden approach, employs forward time and centred space 
discretization and treats implicitly the pressure, Coriolis and volume flux terms. The computed flow fields 
are examined via a detailed comparison to previous analytic approximations, which illuminates both the 
physical and numerical aspects and the validity of these approximations. 
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i. I N T R O D U C T I O N  

The flow of a separating two-phase mixture in a centrifugal field is a fascinating subject from 
both the fundamental and utilitarian outlooks. A basic configuration for the study of  some of 
the essential effects and of  the idiosyncratic features which characterize rotating suspensions is 
sketched in figure 1. The straight cylindrical container, of  radius r* and height H*,  rotating with 
constant f~* around its axis of  symmetry, z, contains a mixture consisting of a dispersed phase 
of "heavy"  particles (or droplets) within a continuous "light" fluid (the asterisks denote 
dimensional variables). The initially assumed solid rotation is an obviously non-steady state under 
the action of  the centrifugal buoyancy. This work concerns the complex separative transient 
m o t i o n l d r i v e n  by that force and counteracted by Coriolis, drag and viscous t e r m s ~ u r i n g  which 
the dispersed phase is basically squeezed from the mixture and concentrated as a sediment layer 
on the outer wall. 

The mathematical framework is provided by the averaged equations of  motion (Ishii 1975; 
Drew 1983), which, upon quite bold closure assumptions, yield a system of non-linear partial 
differential equations of  apparently Navier-Stokes form, as detailed in section 2. The related 
dimensionless parameters are: the reduced density difference, ~t = (p* * *' - P c ) / P c ,  the (modified) 
particle Taylor number, fl = 2 ~ , 2 n , ~ , / , , , .  the Ekman number, E ~ , c ~ v c - - - 0 ,  9,, ~, vc/~,c, = , , , / , ~ ,n , , , 2 .  the aspect 
ratio, H = H*/r*;  and the initial disperse volume fraction, co(0). Here subscripts C and D denote 
the continuous and dispersed phases, p * is the density and a* is the radius of  the dispersed particle. 
The present study is relevant to the range ]~tl ~< 1, E <~ !, fl <~ 1, H >> E ~;2, to(0) ~< 0.5. 

The solution of  this formidable theory, subject to "reasonable" boundary conditions, is a 
multipurpose task. It is expected to: (1) provide physical insight; (2) serve as a simulation of  real 
apparatuses, i.e. accurately predict measurable variables; (3) illuminate the methodology of 
two-phase flow theory in this physical setting, which is very different from the gravity environment 
for which the leading assumptions have been tailored and tested. These tasks- -and  especially the 
last two---clearly demand accurate results, or, at least, a good estimate of  the error bound in the 
solution. Moreover,  due to the skepticism about the presently available closure postulates 
(discussed later), it is highly desirable to construct solution methods not restricted a priori to certain 
hypotheses. These requirements motivate the numerical solutions of  the full two-fluid equations 
which is the subject of  the present investigation. The basic details of  the employed finite-difference 
scheme are presented in section 3. 

Conclusions about the flow field are drawn from the numerical results presented in section 4, 
mostly upon comparison with the analytic solutions of  Greenspan (1983) and Ungarish (1986). The 
former approach,  subsequently referred to as G, treats the interior of  an infinitely long cylinder 
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(endcaps neglected). On account of this simplification, the two-fluid formulation admits an exact 
similarity solution where the volume fraction and the velocities divided by the radius are functions 
of time only, see appendix A. The latter investigation, hereafter denoted as U, tackles the finite 
cylinder via a boundary layer analysis (E~0,  fl--,0) of the linear flow (~--.0), in the framework 
of the mixture formulation, see appendix B. It indicates that viscous layers of Ekman type develop 
on the endplates.t In the interior flow, the most pronounced discrepancies between U and G show 
up in the azimuthal velocity when the parameter ,~ = E',21I I H, which represents the relative 
importance of the Ekman layers in the angular momentum balance, is not small.~: 

The present numerical calculations essentially confirm the above-mentioned analytic predictions, 
but also provide additional insight and broader understanding of both the applicability and the 
limitations of these approximations. In general, a comparison indicates a good agreement between 
numerical and analytical results, which, in turn, increases confidence in the present solver as well 
as in the previous models. 

2. FORMULATION 

The time-dependent motion of the two incompressible, immiscible components in a system 
rotating with a constant fl* is represented by the averaged flow variables of the continuous and 
dispersed phases subscripted by C and D, respectively. The appropriate mixture variable is denoted 
by the subscript m. Some important 
volume fraction) el, mass velocity q? 

~c + 

The equations of motion (see Ishii 

total volume continuity, 

dispersed phase continuity, 

and 

kinematic relationships between the phase occupancy (or 
and volume flux j? are: 

8D= 1, 

j~ = eyq~, f = D or C, 

j~* = j~ + j~. 

1975) are: 

[ i ]  

[21 

[31 

V .j* = 0; [4] 

a8 D 
at* ~ - v . j 3  = 0; [5] 

momentum balance, 

p ,[aj'~_ 1 /18-~ + V 'j~q~ + 2f~* x j~ = e i t - V P ?  - (p~ - pS)[l* x (l~* × r*) + V. f? ]  + M? a, 

f = D  or C. 

Here the averaged pressure p~ has been reduced as follows: 

P? = p? -~pS[E~* x r*]% 

"?~' is the total average stress tensor and M~ d is the generalized interfacial drag. 

[6] 

[7] 

To close the foregoing formulation, constitutive relationships for M~ d, Pg - P~ and r~ should 
be introduced. A detailed discussion of the difficulties and dilemmas encountered in this task is 
given by Drew (1983). The constitutive equations adopted in the present work were chosen for their 
simplicity, proper reduction to the limiting case co= 0, analogy with a homogeneous fluid, 
consistency with accepted "mixture" formulation and minimization of (practically unknown) 

fActually, no analytic investigation of the two-fluid Ekman layer is available. The related steady von Karman flow studied 
by Ungarish & Greenspan (1983) hinted at the appearance of  a sublayer in which the axial derivative of e o is large. 

++The notations ~, and ~. of  G and U have been interchanged in the present paper to meet the new style requirements of  
this journal. 
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correlation or correction coefficients. The analysis of the resulting finite-difference formulation and, 
especially, of the calculated flow field does not indicate any apparent flaw, difficulty or aphysical 
feature which can be either attributed to the particular postulates introduced below or completely 
obviated by an alternative selection. 

The drag terms represent internal interphase forces, whose resultant on the mixture scale 
vanishes, i.e. 

M ~  d + M ~  d = 0 .  [81 

Since the Stokes formula is expected to reproduce the drag on dispersed particles at least for small 
/~ [see the discussion by Ungarish & Greenspan (1984)], and accounting for [8], let 

9 ~? 
M ~  d = - M  *d = - D  (eD)eO ~ ~ ~  (q~ -- q~), [9] 

where the correction factor D(tD), assuming that the maximal packing ratio equals 1, is given by 
the correlation suggested by Ishii & Zuber (1979), 

D0ZD) = (1 -- et)) -zS. [10] 

Numerical stability considerations impose some limitations on this formula when et)--*l, as 
discussed in section 3.3. 

Some pertinent details and discussion of plausible assumptions for pressure differences are 
presented by Drew (1983) and Prosperetti & Jones (1984). For the range of et) considered in this 
work the contact between the particles is probably negligible (except, of course, the sediment layer). 
In this case, the interfacial " jump" condition for momentum and the incompressibility of each 
phase motivate the employment of an extended capillary law, 

P$ - P~ = const. [11] 

For the "viscous" stress terms a Newtonian-like behavior is postulated, 

" - a  ' * W - ' *  [12]  V . r ~  - : ~ , c  n : ,  

and the correction coefficients are taken here, for simplicity, as ay= 1. This formula is quite 
obvious f o r f  = C. Its employment for the other phase, although warrantable in some circumstances 
(Ishii 1975), is still waiting for experimental support. However, this postulate is consistent with the 
stress formula usually applied in the "mixture" formulation (at least in regions of small Veo, a 
condition practically satisfied by the flow field under investigation, as seen below). Drew (1983) 
mentions that, if the dispersed phase consists of solid particles, it is sometimes assumed that f* = 0. 
This limit will be briefly hinted at by taking at) = 0.2 in one of the numerical runs reported in section 
6 (note that a t )= 0 renders singularity). 

The boundary conditions are no-slip, no penetration on solid walls and regularity at the 
axis of rotation. It is asumed that initially the mixture is in solid rotation, qt)= qc = 0, and 
homogeneously blended, eD = et)(0)= const..* The corresponding initial pressure field is given 
below. In fact, the no-slip boundary condition for the dispersed phase is not rigorous---especially 
when particles and droplets tend to slide or roll on solid surfaces, such as the endcaps. Experimental 
evidence on this behavior is, unfortunately, lacking. However, as indicated by Ungarish & 
Greenspan (1983), this condition seems to affect in particular a very thin sublayer, whose limited 
consequences are discussed later. Thus, this no-slip boundary condition is regarded as a plausible 
premise which can be easily replaced in the present numerical code when an improved one is 
set forth. 

To be more specific, the cylindrical coordinate system (r, 0, z) rotating around z is employed, 
in which the velocity components read q / =  {u/, v/, w/},:~ and the variables are scaled by the 

*This is, in general, a non-trivial state because some separation occurs during the spin-up stage and stirring should be 
involved to strictly recover these initial conditions. 

.~f = D or C for the phases, m for the mixture and R for the relative velocity. 
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length r* (the outer radius of the cylinder), velocity [c~ [,sfl*r~' (the typical value of  (qg - q ~ ) . i ) ,  
I ,~, IN [f'~.2~.2 density p~ and pressure ~vcl~ i-o -0 • For the dimensionless variables (without asterisks) one 

obtains, after some arrangement, the following system: 

V ' j m = 0 ,  [13] 

+ v 'JD = 0, [143 

eD VP + FD, 1 1,8 +2.;  x j D -  l + a  [15] 

Here 

[~ [,8 ~ + 2~ x Jc = - e, cVP + Fc. 

ri= -I ,  I,scr+ s .  

C/=  V "J/q.r 

is the convection term and the "source" terms are 

and 

f = D  or C, 

SD = ~ T~ ] ~ r/ -- -fi D(eD)(qD - qc) + EV2qD 

[161 

[17] 

[18] 

[19a] 

S o =  ~c[ ~DI ] L~c ~ D(eD)(qD -- qc) + EV2qc • [19b] 

The task is to compute the time-dependent axisymmetric solution of the system [13]-[19] 
supplemented by [1]-[3] in the domain 0 < r < 1, 0 < z < H, t > 0, subject to the above-mentioned 
boundary and initial conditions. This is attempted via the numerical method presented in the 
next section. The numerical scheme takes advantage of the elliptic equation for P obtained by 
applying the divergence operator on the sum of [15] and [16] and accounting for [2] and [13]. The 
result is 

( '~D ) ~ 1 0 • • + V . [_[0¢lfl(CD + Cc) + SD + Sc I [20] V" +gc VP =2r¢3rrJm" 

Substituting the initial conditions in the last equation yields 

1 eD(0) r 2 + const. [21] 
P(r, t = 0) -- la [ 2,8 I + a[l -- ~D(0)] 

It is worthwhile to emphasize that the present formulation does not distinguish explicitly between 
the mixture region and the sediment layer anticipated to develop on r = I, see figure I. It is expected 
that the sharp increase of ~D and the form of D(eD) will prevent relative motion in this layer and 
consequently provide the appropriate qualitative comportment, including the contact stress which 
stops the particles in this region. Actually, this models the sediment as a Newtonian fluid, of 
viscosity p* (this detail can be readily changed). This approach is advantageous from the numerical 
standpoint and, in some circumstances, can be justified by theoretical and experimental evidences 
(see Amberg & Dahlkild 1987). The sediment is reproduced by a smoothly growing eu (i.e. there 
is no jump to the maximal packing), therefore the position of the mixture-sediment interface cannot 
be sharply located on the numerical grid. These simplifications have little consequences when the 
main flow is of concern and the sediment layer is thin, but should be carefully reconsidered in other 
cases. 
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3. BRIEF DESCRIPTION OF THE N U M E R I C A L  T E C H N I Q U E  

The finite-difference method of Harlow & Amsden (1971) has been quite straightforwardly 
adapted for the present problem. Although variations of this scheme have already been used in 
the solution of two-phase flows (e.g. Carver 1984), its implementation in the peculiar domain of 
rapidly rotating two-fluid flows has not been done or discussed before, to the best of the author's 
knowledge. It is emphasized that the "full" non-linear time-dependent axisymmetric equations 
are solved. 

3.1. Time discretization and marching 

Introduce the superscript " + "  to denote the dependent variables at the "new" time instance 
t + fit, which should be calculated from the known flow field variables at t (without special 
notation). Forward time discretization is used, e.g. de/dt ~(~ ÷ - e ) / r t .  The pressure, Coriolis and 
volume flux terms in the continuity equations are defined implicitly at t + fit. 

The momentum equations [15] and [16] yield 

m80 VP + + m F  D + JD [22] jt~ +2m~ x j ~ -  1 +  

and 

where 

j~ + 2m~ x j~ = - mecVP + + m Fc + Jc, [231 

and 

where 

F = Fo + Fc [26] 

and 

£D 
g = - -  + ec. [27] 

I + a  

The boundary conditions of Newmann type, r i .VP  + for the last equation result from 
substituting the velocity boundary constraints in [22] and [23] and, in particular, 3P+/dr = 0 
at r = 0. This defines P ÷ up to an arbitrary constant. Therefore, for uniqueness, P ÷ is set to zero 
at one grid point as detailed below. It is noted in passing that the initial pressured field, [21], is 
not used in the present scheme. 

After calculating P ÷ the components of jfi and j~ are obtained by straightforward substitution 
into [22] and [23] and employment of [C.I] and [C.2] of appendix C. Subsequently, [14] and [1] 
yield 

s~ = SO-- f t V ' j ~  [28] 

~ = 1 - ~ ,  [29] 

~t 
m - -  [24 ]  

First, an elliptic equation for P* is derived. The sum of [22] and [23] relates VP ÷ to j~+. 
Solving for the latter variable and taking the divergence of the result (see appendix C), accounting 
for global continuity, [13], yields 

1 t~ d P  + ~ OP + 
r-~rrg--~r  +( l+4m2)~zzg  ~z 

- r ~ r [ r ' F + 2 ~ . ( m F + j m ) ] +  ~ . [ ( l + 4 m 2 ) F + 4 m ~ d ,  [25] 
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and the "new" velocity field follows readily: 

= J'~, f = D or C. [30] 
q; ,,7 

This completes, essentially, the calculation of the flow field at t + (St, and an additional time step 
can be attempted. It is quite obvious that the major computational effort should be dedicated to 
the solution of [25]. 

3.2. Spatial discretization 

Central differencing on the staggered grid sketched in figure 2 is used. The indexes i , j  denote 
the center of the numerical cell, and the discretized variables are defined at the following points: 
the volume fractions Ct and the pressure P - - a t  (i,j); the radial and azimuthal components of the 
flux and velocity, (erur), (e/vt), uj, r l - -a t  (i + ~,j); the axial components, (esws), wr--at (i , j  + ½). 
Intermediate values are calculated by linear interpolation, and the convection terms are discretized 
by the ZIP approach (see Harlow & Amsden 1971)• The radial intervals 6r are constant. To 
facilitate Ekman layer resolution, an axial stretching zj= z(Zj) is introduced such that 6Z is 
constant and 6z, ~- z ' (Zj)6Z (see Toren & Solan 1979)• Dummy cells are added for straightforward 
implementation of boundary conditions, e.g. u,j = -u,.2 and (OU/~Z)i,3,, 2 ~'~ (Ui, 2 --l l i .  i)/(~Z3/2 for the 
boundary z = 0 where j = 3/2 (it is noted in passing that the formal 0(6z  2) accuracy is lost in 
discretized derivatives at the boundary). The finite-difference method is illustrated by the discrete 
form of [25] at the point (i,j). 

11[ , 1 ] 
r, fir r, +,, 2,g~-,, 2,., ~r (P''~ ''j - P,5) - r,_ ,,.2)g,-,,.2,.j ~ (P,.5 - P,+ ,J) 

l+4m216z, oz , , , I  Oz,)(,.2)(p~ ~ p+ ] - -  T - -  -+ g,.,_,, :, z-----fP,.+j_, - P,.~) -g, . ,_ , .  2, ,.,_,) =(r.h.s),.j, [31] 
z 

Z 

z-H 1' / ~ E k m o n  

q ~ o ° o ° o 

o o o o o o ° 

:.o o 
. . o l .  ° . I  w 

Sediment / ° O 0 1 : 0 0 B 

0 ° 0 ¢  0 0 0  0 : :1 
¢ o o , ¢ o 

Loyer 

W 

Lo 

~ r  

11 

Figure 1. Description of the system. 

"A_L 
J=JL i 

• :.,- 

j ' 2  
, °L_l ] ; I I ' ! l "  

i = I 2 3 I L 
w i,j,-~ 

I ~ l " "  

Figure 2. Spatial grid. 
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where, according to [27], 

' [ '  l gi+(, 2).j = ~ ~ (eD, +,., + eD,.,) + (eC, +,., + eC,.j) etc. [321 

Equation [31] yields a block tridiagonal system for the unknowns P~.~ at the internal mesh points, 
2 ~<i~< IL, 2 ~<j ~<JL (except P2.: =0) ,  which is solved by direct block factorization [see, for 
instance, Issacson & Keller (1966)]. This requires about 3(JL * I, 3) operations per time step. The 
number of operation in the subsequent computations of the "new" flow variables at the mesh points 
is proportional to 14(I L * JL) (volume fraction and three flux and velocity components for each 
phase). 

3.3. Resolution and stability considerations 

A comprehensive analysis of the numerical error and stability restrictions is beyond the scope 
of the present paper. Some pertinent indications on these issues are gained and discussed rather 
heuristically via the examples presented in section 4. 

However, two critical demands should be formulated for understanding some of the numerical 
challenges encountered in the range of parameters of this investigation. First, the spatial resolution 
requirements are considered. Shear regions of radial scales (HEr;2) j;2 and (HE) ~'3 are anticipated 
near the outer sediment layer, and fir should be restricted accordingly. However, when H ~ 1, 
the thinner yet more active Ekman layers dominate. These layers are expected to develop on 
the endplates (z = 0, ,- = H) and their axial width is ~3E  I/2. Even a rough resolution of these 
critical shear regions imposes the limitation 6z < E ~2. (A simple test model with mesh points 
at 0.6E ~2, 1.8E j'2 and 3E j-' overestimates the volume flux in the layer by about 16% due to 
discretization errors.) 

Next, the various plausible time scales encountered in the flow under investigation, as 
summarized in table !, are recalled. Thus, since the shortest time scale in this problem is 
probably the relaxation interval, 2, a smaller 6t is needed for reproducing it. Although 
the relaxation behavior decays exponentially after t = 0, the appropriate balance, which is 
essentially 

- ----f-- UD, [331 

prevails. Moreover, the corresponding stability restriction 

< I~ 1/~2 = I~ I/~:( 1 - eD) 25 [34] 6t 

becomes eventually more severe due to the continuous increase of eD--*l in the sediment 
region. (This limitation strongly suggest treating the drag terms implicitly, which, however, 
considerably complicates the scheme.) To avoid prohibitively small 6t resulting from [34], 
the value of D(eD) is artificially chopped to 10 when [34] yields larger values. Thus, to simu- 
late the process during the separation interval ,,-I, about 10/(1 1  =) time steps should be 
calculated. From the physical standpoint, this setting of D(eD) captures the limited relative 

Table 1 

Time scale 

Process Dimensional Dimensionless 

Particle relaxation (for buoyancy~lrag balance) a "2 p~ 
l'Z- 

Revolution of system, development of Ekman layers, inertial oscillations f2*- 

Spin-up H "  /~--P-~-- 

Phase separation ([a[,6'~*) i 

Viscous momentum diffusion H .2 P~ 

( l  + ~)1~1/~ = 

I 

2 
! 

I 
2 El.2 

M F  14~. F 
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motion in the sediment but does not account for dominant contact stress or coalescence. The 
subsequent comparison to theory vindicates the assumption that the details in this layer have little 
influence on the external flow when ~o(0) is not large. 

4. RESULTS 

Numerical solutions were obtained for the two cases: 

(I) ct = 0.5; (II) ~t = 0.1. 

The other parameters in both systems are 

E = 0 . 0 1 ,  f l = 0 . 1 ,  H = 2  and e o ( r , t = 0 ) = 0 . 2 .  

Note that ~ = l and ;. = 5 in cases I and II, respectively. 
The computations were carried out until t = 1.0 at least, which is believed to cover the most 

significant aspects of  the flow field behavior. 
The subsequent discussion concerns mostly, and unless otherwise mentioned, the results of  the 

following discretization. The numerical grids contain l0 equal radial intervals and l0 stretched 
axial spacings (zj = {0.0496, 0.172, 0.333, 0.546, 0.827, 1.173, !.454, 1.667, 1.828, 1.9504}) and the 
time step is 6t = 10-4.t Here the required computer resources for single precision arithmetic, are, 
approx. 50,000 words of  memory and, per time step, 0.029 s CPU on a CRAY X-MP/48~ or 
0.21 s CPU on an IBM-3081 D~, (it is recalled that the single precision calculation on the former 
computer uses more significant digits than the latter, but no critical discrepancies seem to show 
up in the present runs). The results on the coarse grid are emphasized because their display and 
analysis is simpler and their reproduction is affordable on medium-sized computers. Moreover, 
their accuracy seems satisfactory for both engineering and scientific applications, except for small 
details as discussed below. 

In addition, some reference will be made to solutions under finer spatial and time discretization, 
in particular, using 30 stretched axial intervals. 

The overall observed features of  the flow field are, roughly, as follows. The heavier phase D is 
expelled radially by the centrifugal buoyancy which, after a short relaxation interval, is counter- 
acted by drag and Coriolis terms. The main result is a quasi-steady radial relative velocity, URoCr, 

accompanied by a similar Up. The volume fraction eo therefore continuously decreases in the main 
mixture bulk but increases near the outer wall (the "sediment layer") where the radial motion is 
blocked. A retrograde azimuthal motion, ti m < 0, is induced by the radial migration of the heavier 
phase in account of angular momentum conservation. The viscous frictional effects on the endcaps, 
which attempt to reduce the above-mentioned angular lag, are mostly confined to boundary layers 
of  Ekman type. These layers absorb mixture from the interior, transport  it to larger radii and eject 
it axially near the outer wall. (This "spin-up" secondary circulation is closed by an inwardly radial 
small volume flux in the inviscid core.) The positive UR gives rise to a small negative azimuthal 
relative velocity, L'R < 0. The details are discussed below. 

Consider system I (i.e. x = 0.5). 
First, the results for cD are analyzed. Figure 3a shows that near the midplane z = I this 

variable is (almost) independent of r (except the sediment layer). The typical z dependence of this 
variable can be inferred from figure 3c, based on the l0 x 30 mesh results (with 6t = 5 x 10-5). 
It is observed that eD has a sharp axial variation in a sublayer[[ whose characterstic thickness is 
x f ~  ( z o n e  particle radius in dimensional form). Near the endplate the initial value of  0.2 
essentially prevails. This peculiar sublayer comportment  confirms the analytical results obtained 
for the related yon Karman rotating two-phase boundary layer by Ungarish & Greenspan (1983). 
Further discussion of this region is given below, when the results for the strongly related relative 

tin run (II), 6t = 0.8 x 10 ~, for t > 0.7, was used to overcome numerical instabilities. 
:~When no special vectorization tools or strategy is used. An additional speedup factor of about 2 result upon employment 

of the CRAY routine MINV for the inverse of a matrix instead of the IMSL routine LINVIF. 
§Using highest optimization on compiler VS-Fortran. 
lithe term sublayer is used to stress the thinness as compared to the more common Ekman layers which form on the plates. 
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Figure 3a. eD vs r at various times; • = 0.5. (Numerical  
results at "midp lane"  z = 0.827.) 

I~ D 
020 

0.18 

0.16 

0.14 

0.12 

0.10 
G 

0O8 

006 

004 

O0"Z 

°o  oll olz 0.3 014 0.5 0'.6 :;.8 ;.0 
t 

Figure 3b. ~,D vs t in the core; [Numerical results at 
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Figure 3c. et)!eo(t = 0) vs z in the sublayer, at t = 0.2, r = 0.05. x ,  10 x 30 grid (values o fz ican  be inferred 
from the graph); 0 ,  I0 x 10 grid (at closest point to boundary) .  

velocity are analyzed. Outside the sublayer, the axial changes of e D are usually in the fourth digit. 
It is noted that the grid I0 x 10 has only one point across the sublayer. Nevertheless, the accuracy 
of eD in the core is very good as indicated below. It is concluded that, except the thin sublayers, 
the numerical results are in good agreement with the similarity assumption of G, eo = eD(t) in the 
interior and the conjecture of  U that eD is spatially independent in the Ekman layers. Moreover, 
figure 3b also indicates a very good quantitative agreement: the numerical results are slightly 
overestimated by the analytical model G; the discrepancy increases in time to about 4% at t = 1. 
It will be argued later that most of  this discrepancy can be attributed to the lack of endplate effects 
in solution G, while the numerical error in eD is no more than 1%. As expected, the sediment layer, 
figure 3a, is "smeared". In addition, non-physical radial oscillations in ~D are introduced by the 
numerical treatment of  this kinematic shock. These numerical wiggles become eventually more 
pronounced, as the " jump" between the core and sediment increases. Thus, for t = 1, the 
oscillations are about - 2 ,  8 and - 3 9 %  at r, = 0.55, 0.65 and 0.75, respectively. No attempt was 
made to (artificially) damp those oscillations since they apparently have no significant effect on the 
present investigation. Similar wiggles are also displayed by most of the other flow variables, as 
depicted in the accompanying figures. 

The typical behavior of the radial velocity of the dispersed phase is displayed in figures 4a and 
4b. In the "inviscid" core (UD/r) is, essentially, a function of  time, as predicted by G, and the 
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quantitative agreement between this model and numerical results is good (additional details are 
given below). 

Results for the angular velocity of the mixture core are shown in figures 5a and 5b. (It is recalled 
that mixture velocities are obtained from the directly computed eD, ec, qD and qc variables via the 
kinematic relationship 

[( I + ~)eoqo + eCqC ] 
qm = • ) [351 

(1 + ~D)  

These graphs deserve special attention because they indicate global viscous effects, as follows. 
First, it is observed that Vm/r decays slightly but monotonically towards r = 1. (G and U predict 
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Figure 5a. -(vm/r) vs r at various times; a = 0.5. (Numer- 

ical results at "midplane" z = 0.827.) 
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Figure 6. (Um/r) vs I in the core; = = 0.5. [Numerical results at (0.10, 0.827).] 

r-independent core values.) This feature can be ascribed to the azimuthal shear on the outer wall 
which spreads into the interior. Second, but more important, the very pronounced effect of the 
Ekman layers show up in the time development of (urn/r), figure 5b (the finer mesh results are also 
displayed here). The numerical results are both quantitatively and qualitatively different from the 
prediction of the infinitely long cylinder model G. However, the agreement with thefinite cylinder 
model U is much better. Moreover, a similar comportment is observed in figure 6. Except for the 
initial relaxation time, which is neglected in U, and for an oscillation around t = 0.2 (whose 
investigation is not pursued here), the agreement between the quite small numerical values of the 
secondary variable (urn~r) and model U is indeed very good. 

Viscous effects are also reflected by the axial velocities, for which the numerical results display 
the following interesting features. The difference [Wcl- I wo[ is usually positive but quite small, 
typically 2% for t ~< 0.1 and 0.5% for t >/0.2. WD is antisymmetric with respect to the midplane 
z = 1. The extremal value is reached at the second meshpoint away from the endplates (Az = 0.247) 
and can be regarded as the Ekman layer suction, subsequently denoted by ft. Further away from 
the plates WD changes linearly. The radial variation of if, figure 7a, attests, again, the presence of 
an r-independent core surrounded by a quite thick viscous region induced by the outer wall and 
by the sediment layer. Moreover, these profiles emphasize the resemblance of the present two-phase 
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Figure 7a. Ekman suction ( # / E  ~'2) vs r at various times; 
= = 0.5. (Numerical  results of  - w o / E  ~'2 at z = 0.247.) 
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flow to spin-up motions of homogeneous fluids. Thus, the slower fluid is sucked into the Ekman 
layers where it is transported outwardly and subsequently pumped into the interior near the outer 
wall. The latter region apparently possesses a shear layer structure, as mentioned above. However, 
the analytic understanding of the corresponding two-phase flow is presently incomplete and under 
investigation (Ungarish 1988b). Figure 7b shows that the Ekman layer suction quickly becomes 
quasi-steady and is simply related to the angular velocity of the core (recall that these layers are 
expected to develop during a time interval ~ 1~ I/L which equals 0.05 in this run). This behavior 
is in good agreement with the results U and suggests that the Ekman layer suction can be 
reasonably approximated by the integral correlation 

I'~'D = H%C" = _+KE' 2 ( ~ )  [36] 

in a wide range of parameters; here K is a coefficient close to 1 and the + and - correspond to 
z = 0 and H, respectively. The correlation [36] proves very useful in the derivation of an improved 
analytic two-fluid model for the finite cylinder (Ungarish 1988a). 

The foregoing results indicate the importance of the shear layers on the endplates z = 0, 
H in establishing the azimuthal, axial and radial velocity components. Although the coarse 
grid has only three computational points athwart the Ekman layer, the results in the outer region 
are in very good agreement with those obtained on the fine grid, with about 10 corresponding 
points, as seen in figures 5b and 7b. This indicates that some of the discrepancies between 
the numerical results and theory cannot be attributed to discretization errors, but are apparently 
more intrinsic. The main factor is, probably, the presence of the sublayer of larger eD. Here 
the radial buoyancy force is obviously stronger than accounted for by the analytic model, 
cf. appendix D, and the radial velocity near the plate is enhanced accordingly. Additional 
disagreements are introduced by the higher-order terms in the asymptotic theory. For instance, 
~eD and E ''2, both attached with higher negligibly small terms in model U, are actually equal 
to 0.1 in the run data of case I. Furthermore, the shear on the outer wall, also neglected in that 
model, clearly shows up in the numerical solution. Consequently, it can be argued that the 
numerical errors in (Vm/r) and in w o are not larger than, say, 15%. In this respect, it is worth- 
while mentioning again that the numerical results for (Um/r) are encouraging in the sense 
that important effects have not been deteriorated by the numerical errors. This variable, sensi- 
tive to the Ekman layers and of typical magnitude 10 2, has been obtained from the computed 
O(I)  values of eD, ~c, Uc and Uc via the algebraic formula [35]. Despite the expected error ampli- 
cation due to cancellation of leading terms, the results compare very satisfactorily with theory, 
cf. figure 6. 

Attention is focused now on the components of the relative velocity, qR = qD - qc. This variable 
deserves special concern for the following reasons: (a) it is the dominant factor in phase separation; 
(b) its calculation is a major motivation for using the two-fluid formulation instead of the 
apparently simpler "mixture" model, which relies on a closure assumption for qR; (c) it decays to 
zero via the sublayer; and (d) contrary to initial expectations, it may be considerably affected by 
the Ekman layers on the endcaps. It is recalled that qR'-~ is negligible. 

The typical axial variation of qR is depicted in figure 8c. Here again, the sublayer is observed. 
Some understanding of the driving balance in this region is gained as follows. Eliminating the 
pressure term from [15] and [16] and considering the limit of small ~, /~ and E, yields the 
approximation 

1 1 D (to) 8 
0 = ~ r i  /~ i _ e ~ q ,  + E~sz2q,, 

subject to qR = 0 at z = 0 and decay of the viscous term for large z. If ~D is assumed z independent, 
one gets 

{ j ]l 1 - - ~  D 
qR -- i~l £ ) ( -~  ri 1 -- exp E ° l - c o  • [37] 
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Next, combining [13] and [14] and using kinematic relationships yields 

COe----~D + [qc + (1 -- eD)qR ] • Ve D = --eD(l - - / ; D ) V  • qR, 
dt 

whose characteristic solution, on account of [37], is 

= - 2 ] - ~ e t )  b(a--~ 1 - e x p  E " [381 

The foregoing crude approximations reveal both the formation of the sublayer of thickness -,- 
and the fact that eo decays considerably slower in it, with (dr;D/d/)--*0 as z-*0. (A similar behavior 
shows up, obviously, near z = H.) It is anticipated that the axial variation ofe D becomes ultimately 
steeper with tendency towards a jump from 0 to eD(0) at z = 0 as t--*oc. This resembles the 
s i n g u l a r i t y  t3go/63Z---~O0 detected in the steady-state von Karman layer (Ungarish & Greenspan 
1983). However, no such difficulty was encountered during the time interval computed here. 

Outside the thin sublayer, qR is strongly z independent. Moreover, figures 8a and 9a indicate that 
both (uR/r) and (Vr/r) are functions of t only in the core region, in agreement with G. This supports 
the hypothesis that outside the sublayer the relative velocity is established by local balances between 
buoyancy, Coriolis and drag, irrespective of boundary conditions. Consequently, the quite 
significant and monotonically increasing discrepancy with the results of G, cf. figures 8b and 9b, 
is, at the first glance, surprising. However, it is argued that these are, essentially, not numerical 
errors--but rather a by-product of the lack of Ekman layers in solution G. The local balances 
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Figure 8a. Relative radial velocity (uR/r) VS r at various 
times; :t = 0.5. (Numerical  results at "midplane"  z = 0.827.) 
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between centrifugal buoyancy and drag in the radial direction and between Coriolis and drag in 
azimuthal direction yield 

UR ~C f ~  [39a] 

and 

t'R ~ f~¢ffUR OC ~fr .  [39b] 

Here, the d imensionless  effective angular  velocity o f  the mixture  is 

f~e~r ~ 1 + I~ 1,8 ( ~ ) .  [39c] 

In view of  [39c} and figure 5b, the model  G underes t imates  ~¢rr by the relative a m o u n t  

L \  r / v  r G ' [40] 

where U and G refer to the appropriate analytic models. According to [39], UR and t'R of  model 
G require the corrections 2(A£2) and 3(Aft), which, as shown in figures 8b and 9b are in reasonable 
agreement  with the numerica l  results. It is therefore concluded that  the numerica l  e r ror  is only in 
the range of  3% in uR and 6% in rR. In fact, a s imilar  correc t ion  should be appl ied  to the ca lcula t ion  
of  CD(t) by model  G,  cf. figure 3b. The correc ted  values, not  shown here, indicate  that  the numerical  
er ror  in Co is even less than  1%. 

In the same spirit,  it can be shown (Ungar i sh  1988a) that  an improved  analyt ic  a p p r o x i m a t i o n  
for Up is 

[UD],mp,ov,a = [Jr.' #]L + [(1 - eD)UR]G(I + 2 A~). [41] 

Therefore, in view of figure 4b, it is claimed that the numerical error in UD is less than 0.5%. 
It is noted in passing that case [ was also solved with aD = 0.2, on the 10 x 30 mesh. No major 

modification of  the f low field, as compared to the original aD = I run, was observed. The details 
are omi t ted  for brevity.  

Similar  numerical  results were ob ta ined  for system II. The values o f  ~ = 0.1 and 2 = 5 cause 
small  Um and Cm, which mot iva ted  a high resolut ion  run, on a 20 x 30 grid, with 6t = 2 x 10-5.'1 . 

tThe axial spacing is identical with that of figure 3c, and the radial points are equally spaced. Each time step required 
0.13CPU s on a CRAY X-MP/48. 
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Figure I I. Same as figure 7b, for :t = 0.1. 

The essential flow features discussed above carry over to system II--subject to quantitative 
differences due to the significantly smaller :~. Figure l0 shows a dramatic deviation of the 
angular velocity from solution G, reflecting the dominant influence of the Ekman layers as indeed 
expected for the present ), = 5. However, the Ekman suction exhibits a continuous drift from 
correlation [36], see figure I1. This unexpected behavior can be attributed to the contribution of 
the sublayer whose relative importance ultimately increases when I t'm/r ] is small, cf. appendix D. 
The discrepancy between the numerical results and model U observed in figure l0 is mainly 
explained by the same argument, but the contribution of the side wall shear may also be important 
in accelerating the decay of the angular velocity. 

5. C O N C L U D I N G  REMARKS 

A finite-difference solver for the full two-fluid equations of motion in a rotating finite 
axisymmetric cylinder has been developed and verified via a comparison with previous analytic 
approximations. On a quite coarse grid (10 x 10 intervals and only three points across the 
Ekman layer), the representative estimates for the numerical errors are: I% for the primary 
variables uf and el; 5% for the relative velocities UR and t'R; and 15% for the secondary variables 
Vm and ~Vf (here fdenotes  phases D or C). A typical run requires ~ I O/Ictlfl2 time steps and for each 
one the major computational effort is dedicated to the solution of a Poisson-type equation for the 
pressure. 

This investigation suggests several requests for improvement of the numerical scheme, such as 
damping of the spatial oscillations near the sediment layer, and more important, the implicit 
treatment of the drag terms to alleviate the present numerical stability restriction 6t < I otlfl2/D(eo). 
In addition, it seems that performance on supercomputers can be considerably enhanced by 
implementing special vector routines and multitasking in the solution. For example, after 
calculating the "new" pressure P,~, the remaining flow variables for phases D and C can be 
computed simultaneously (cf. Larson 1984). 

The numerical solutions display peculiar sublayers of thickness -,- ~ ( ~ one dispersed particle 
radius in dimensional form) beneath the more conventional Ekman layers on the endcaps. In these 
sublayers the mixture separates considerably slower than in the outer region, and the enhanced 
buoyancy increases the apparent suction of the Ekman layers. The possibility of such sublayers 
was pointed out by Ungarish & Greenspan (1983), and, to the best of the author's knowledge, this 
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is the first numerical solution of the full equations of motion which confirms that prediction. 
However, the physical interpretation of this result is obscure and requires experimental support, 
see also the discussion in the above-mentioned paper. Fortunately, there are indications that, in 
the present problem, the main numerical solution is essentially unaffected by the resolution of  this 
very thin region. 

Notwithstanding the sublayer, the present numerical results increase confidence in the previous 
analytic investigations of the flow field in a cylinder. Greenspan's (1983) solution property 
reproduces e r, uf, UR and t'R. Ungarish's (1986) model approximates well the Ekman layers influence 
on t'm and Urn. Furthermore, these two models can be combined to yield improved analytic values 
for UR and %, a topic which has been pursued by Ungarish (1988a). These conclusions are expected 
to be relevant to the parameter range I~t] ~< 1, E ,~ I, fl ,~ 1, H ~> E I'-', gD ~< 0.5. 

The numerical runs also indicate an interesting shear layer structure adjacent to the sediment 
layer on the outer wall, a topic worthy of further investigation (Ungarish 1988b). 

However, it is emphasized again that the two-phase formulation used in the present solution and 
in the above-mentioned previous analytic studies contains several critical assumptions, such as 
the stress term postulate, the linear drag law and the no-slip boundary conditions. It is very 
encouraging to find that the resulting equations yield consistent and, apparently, physically 
meaningful flow patterns in the difficult non-intuitive regime under consideration. These results can 
serve as a good starting point and motivation for experimental verifications. In this respect, it is 
noted that different boundary and initial~" conditions, stress terms, drag laws and shear-lift forces 
can be straightforwardly incorporated in the present numerical solver--which, in this respect, has 
a considerable advantage over the less versatile analytical models. 
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A P P E N D I X  A 

Greenspan's (1983) infinitely long cylinder solution for the mixture zone follows from the 
similarity assumptions e I = ei(t), or= r[U1(t)~ + Vr(t)~ ] and P = r2P(t), where f = D or C. 

Substitution into [13]-[19] yields, after some arrangement and elimination of P from the radial 
equations: 

and 

u b =  

E D U D "1 t- e C U C = 0 ,  

t 8 D + 28DU D = 0, 

fl(l + ~t)[fl lot I(v'o + 2UDVo) + 2Ut)] = D(et))(Vc - I'D), 

~D D(eD)(Vc - I'D) f l [ f l l~ t l (Vc+ 2UcVc)+ 2Uc]= I -8 t )  

[A.I] 

[A.2] 

[A.3] 

[A.4] 

I - et~ ~2eDUD(Uo - Uc) 
I + 2(I - ~D) t i - ~  ~ u~  - v~  - (I + ~ ) ( u ~  - v~)  

2 [ I [ ~  D ( e D ) ( U c _ U o ) ] } ;  [A.5] 
+~--~ (I+~x)VD-- Vc]+~- -~  + l - - e D  

with the initial conditions eo = eo(0), Uf = V i =  0. This system is integrated by standard methods. 
It is worth noting that E and H do not enter this formulation (because the viscous terms are 
identically zero), and that [A.I] asserts j= • i = 0. 

A P P E N D I X  B 

Ungarish's (1986)finite cylinder model is obtained from the "mixture" formulation and the 
postulate 

1 - e o  . 
qR = s ~ rr, 

where s = Ix [/~t. The volume flux balance in the inviscid core and Ekman layers leads to the 
following results for the former region: 

and 

eD = eo( t ) ,  [B. 1] 

( ~ )  = 2 ~ ( - ~ - ~ ) ,  [B.2] 

\ 1  I / 

eD(l -- eD) 2 
e b = -- 2s [B.4] 

D(So) 

= - 2 2  - l e v i ;  

the prime denotes differentiation in t. 

lB.5] 
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Equations [B.4] and [B.5] are readily integrated with the initial condit ions eo(0), (Vm/r)= O. 
It is observed that E and H enter the formulat ion via 2 = E"2/I~IflH. The resulting eD does 
not require "correc t ions"  in the Ekman layers, in constrast to Vm and Urn. 

A slight inconsistency is noted: the x/D(eD) term above apparently corresponds to o i =  D(eo) 
in [12], but the numerical solution used a I = 1. This implies that the model treats a slightly more  
viscous fluid in the Ekman layer. On the other  hand, the numerical viscosity acts as a compensa tor  
of  this discrepancy. 

A P P E N D I X  C 

Consider the vector equat ion for J: 

J + 2m:~ x J = B. [C. 1] 

It can be verified by substitution that the solution is 

I 
J - I + 4m 2 [B + 4rn2(~ • B):~ - 2m~ x B]. [C.2] 

Consequently,  in the cylindrical coordinates (r, 0, z), one gets 

B t3 4m 2B. 2m B 
V ' J = V .  ! + 4 m  - - - - - ~  f c3z 1 + 4 m  2+:~ 'V  x 1 + 4 m  2' [C.3] 

where the vector identity 

V '  a x b = b.  (V x a ) -  a .  (V x b) [C.41 

has been employed. Equat ions [22] and [23] consist of  a particular case of  the form 

with 

e (dP f  dP£~, 
B = G -  \c3r + ~ - z  ,] 

~ ~0 d--~ G, ~ e and P 

[c.51 

identically zero. 
Substitution into [C.3] yields 

1 ~ e 0P ~ c3p I ~, 1 c ~ 
- -7- + r ~r r (G, + 2mGo) + -~z G.. [C.6] V . J =  r~rr l+4m2t3r  azecz  l + 4 m  2 , . 

A P P E N D I X  D 

An analytic estimate o f  the Ekman layer flow and its reaction to the increased buoyancy in 
the sublayer is derived. Let u ~, v j and p~ denote the known appropria te  mixture variables in the 
inviscid core, and symbols with tildes represent the boundary  layer corrections. The sublayer 
is represented by the einsatz e'o = (eO(0)-  e~)e -¢;'/~, where ( = z/E r'2, the superscript I denotes 
the inviscid core and k is a t ime-dependent decaying function initially of  order  unity. E, ~t and 
fl are assumed small. The  boundary  layer approximat ions  for the linear momentum equations 
yields 

- 2F = ~ - i  + ~ [go(0) - e ~(t) le  -:'v*~ r, [D. 11 

022 
2a = a(-- ~ [D.2] 

and 

= 0. [D.3] 
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Accounting for the boundary conditions, the solution is 

fi = e -C(A sin ( + B cos ()  - Be -:/'J*~, 

g = e -¢(A cos ~ - B sin ( )  - 2k~Be  -~;'/~, 

where 

[D.41 

[D.51 

A = - v ~ + 2k~B,  

B= -ut + B, 

k 
B = 1 + (2kfl) ~ ct[eo(0) - e~(t)lr.  [D.6] 

The reduced radial volume transport in the Ekman layer is 

j'[ ' I v l  E ''2 t~ d~ = ~(A + S) - x / ~ B  ~ i ( -  + B), [D.7] 

where the last approximation accounts for lull ~ I"'1 and k/~ ~ I. 
The "strength" of  the sublayer is reproduced by the buoyancy parameter B, and for B = 0 the 

result of  U is recovered. However, the foregoing solution clearly indicates that the additional 
buoyancy in the sublayer enhances the volume transport and increases the peak value of  u in the 
Ekman layers. The trend is consistent with the results of figures 5b and 10 in both qualitative and 
quantitative aspects. 


